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Application of the Godunov scheme to the Euler equations of
gas dynamics based on the Eulerian formulation of flow smears
discontinuities, sliplines especially, over several computational
cells, while the accuracy in the smooth flow region is of the order
@ {h), where histhe cell width. Based on the generalised Lagrangian
formulation {GLF} of Hui et &l., the Godunov scheme yields superior
accuracy. By the use of coordinate streamtines in the GLF, the slip-
line—itself a streamline—is resolved crisply. Infinite shock resolu-
tion is achieved through the splitting of shock-cells. An improved
entropy-conservation formulation of the governing equations is also
proposed for computations in smooth flow regions. Finally, the use
of the GLF substantially simplifies the prograrmnming logic resulting
in a very robust, accurate, and efficient scheme. @ 1995 Academic
Press, [ng.

1. INTRODUCTION

Recently, Hui and his collaborators {1-5] have introduced
a generalised Lagrangian formulation (GLF) for the steady two-
dimensional Euler equations of gas dynarmics by mapping the
Cartesian coordinates (x, y) to the Lagrangian-like coordinates
(A, £) by means of the transformation '

dxzzdﬁw._‘; dy:%d)\+Vd§, (1)

where u and v are the x and y components of the velocity,
g = Vit +v? is the speed of the flow, and IV and V are
geometric variables having dimensions of the reciprocal of the
velocity. It can be observed from (1) that £ defines a streamfunc-
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tion while A is the distance along a streamline. The transformed
Euler equations in the GLF are

JE  dF
—_— "t — =
YT 0, (2)
where
K 0
KH 0
Ku + pV —p sin @
Kv — pU , pcos @ ,
U —cos 6
v —sin @
K= p(uV—vlD,
1, Yy P
=+ ) + -t
2(u v) = 1p’
005925, sin6=2,
q q

& being the flow inclination angle, p the pressure, p the density,
and -y the ratio of specific heats of the gas. The first four
equations express the laws of conservation for mass, energy,
and x and y momentum, in this order. The last two equations
are the compatibility equations which arise from the transforma-
tion (1).

For supersonic flow, the system (2) is hyperbolic [5], and the
classical Godunov scheme [6) for marching in the A direction is
applicable. The programming logic in the implementation of
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FIG. 1. Conscrved average f across discontinuous data £

the Riemann solver in the GLF is substantially simplified as a
slipline, itself a streamline, coincides with a cell interface.
This ensures the continuity of the fluxes across cell inter-
faces, i.e., coordinate streamlines, since the numerical flux vec-
tor F depends only on p and & which are continuous across slip-
lines.

The ability of the Godunov scheme to resolve a slipline
crisply ts inherent to the GLF by the use of coordinate stream-
lines and has been formally demonstrated in (3]. In the favour-
able situation, a slipline coincides with a coordinate streamline
and i8 resolved exactly; in other cases, the slipline is confined
to lie within one computational cell and never cuts across other
cells. The smearing effect induced by the averaging procedure
across a slipline is thus avoided.

The intent of this paper is twofold: first, a treatment for
the crisp resolution of shock discontinuities is proposed, with
the methodology elaborated in Section 2; and second, an
alternate entropy-conservation formulation is introduced in
Section 3 for the Euler equations for purely smooth flow
computations, with the added benefit of eliminating the small
entropy overshoots commonly observed in the vicinity of
sliplines. The complete numerical procedure is summarised
in Section 4. Finally, several test problems are presented in
Section 5 before closing with concluding remarks in Sec-
tion 6.

2. THE SHOCK-ADAPTIVE GODUNOY SCHEME

The only source of error in the Godunov scheme arises from
averaging the flow quantities over a computational cell when
representing the flow in all cells by piecewise constant states.
While this error is small in smooth flow regions, it is large in
cells containing discontinuities. More precisely, the cell average

J =gl rae

of a piecewise constant discontinuous distribution f, for example
across a shock, is a poor representation, as shown in Fig. 1, of
the two constant states on both sides of the discontinuity.
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The basic idea of the shock treatment hereby proposed con-
sists of splitting a shock-cell, a computational cell containing
a shock wave, along the trajectory of the shock. The spiit shock-
cell then consists of two shock-subcells: one entirely upsiream
of the shock and the other entirely downstream. In this way,
the cell averaging procedure across the shock discontinuity is
avoided. The fictitious cell boundary separating the two shock-
subcells and moving through the underlying regular grid at the
local speed of the shock shall be called a partition. With this
abstraction, shock-subcells and regular cells can be treated on
an equal footing in the Godunov scheme. ,

The elements of the method as applied to the Euler equations
of gas dynamics based on the GLF are now outlined. This work
is a generalisation of the shock-cell splitting method initiated
in [4]. where the shock position was assumed a prieri, multiple
shocks were excluded, and the shock speed was frozen within
the shock-cell. More details on these recent developments can
be found in [7].

Similar work, although based on the Eulerian formulation,
has been reported in [§-11] among others. In addition to the
necessity of a grid generation i the Eulerian formulation, for
boundary value problems, the splitting of cells along shocks,
and sliplines as well, constitutes quite a complex geometrical
task. Such a method is commonly veferred to as a front-tracking
method in the literature as both shocks and sliplines are actively
tracked. As already mentioned, as a conseguence of using coor-
dinate streamiines, sliplines need not be fracked in the GLF
and shock-tracking becomes much simpler.

2.1. Shock Propagation

Figure 2 illustrates qualitatively the splitting of a shock-cell
and the propagation of the shock through it. The subscripts
d and u refer to the downstream and upstream flow states,
respectively. The solution is marched in the usual sense, with
the CFL stability condition being satisfied at all steps except
at the last step when the shock leaves the shock-cell. This
relaxation of the CFL condition is performed by ignoring in-
coming weak elementary waves in a shock-subceell in the deter-
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FIG, 2. Propagation of a shock through a shock-cell.
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mination of the step size (see [8]). More precisely, an elemen-
tary wave is said to be weak if

&—1‘<T01
P

3

for some prescribed tolerance Tol. This procedure is exact for
the case of an isolated shock propagating in a uniform flow
region, but it leads to the loss of the conservative nature of the
numerical scheme for a shock traveliing in a non-uniform flow
region. These effects, on the order of the tolerance Tol, are of
no numerical significance. The numerical procedure for
marching in A is summarised in Section 4,

Regarding a shock-subcell as a normal cell with exactly
one state, but with special interfaces, the cell-splitting concept
extends straightforwardly to model complex shock interactions
by recursively splitting a shock-subcell and introducing a new
partition for every incoming shock. This intersection of two
partitions, which models the collision of two shocks, is of
special interest. Such a situation arises in the overtaking of
shocks of the same family or in the intersection or reflection
of shocks of different families. As is well known, a physical
slipline will emanate from the intersection point of the two
shocks. This new slipline can be captured exactly by introducing
a new coordinate streamline at the intersection of the two parti-
tions. However, adding a coordinate streamline has the disad-
vantage of possibly creating very small cells which in turn have
the adverse effect of reducing the step size for the remainder
of the simulation. It is generally preferable computationally to
sacrifice the slipline resolution in order to avoid such refinement
of the underlying grid and to have to take mmch smaller
marching steps. This compromise is well justified since the
slipline will be confined to lie within one cell in the GLF and
no additional smearing will occur [3].

2.2. Shock Detection Criterion

The shock-adaptive Godunov scheme is complemented by
a shock-cell splitting criterion which triggers the splitting of a
shock-cell in the presence of a shock in the flow field. In the
approach hereby considered, a shock-cell is split if the pressure
jump across an elementary shock wave, as obtained from the
exact solution to the local Riemann problem, is larger than
some critical shock strength threshold, say if its reciprocal

pu
— < S,

0<dgr <1,
Py SHK

)

This desirable self-adaptivity feature permits for the automatic
detection of a shock wave without a priori knowledge of its
position nor existence,

The value of Sgx = 1 corresponds to splitting all cells along
elementary shock waves, whereas dsx = 0 corresponds to no
splitting and the scheme simply reduces to the classical Godu-
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nov scheme. The choice dsux = 1 is obviously not a practical
one since weak elementary shock waves, as identified by the
solution to the local Riemann problems, are usually indicative
of a compression region and not necessarily of a shock.

For a weak elementary shock wave, with pi/p, = | + &,
0 < g <€ 1, the jump §,/8, in entropy measure § = p/p” is
O(&?). In terms of the criterion (4),

S, yi—-1{1 )’
—= 1t —1].
S,, 12')/2 (851.”(

Thus, with a choice of dgy = 0.70 the entropy jump is less
than 0.32%, and for shocks weaker than this the scheme degen-
erates to the classical Godunov scheme. Such a value of Sy,
has been shown to be satisfactory for most computations.

The pressure ratio in (4) is cheaply computed since p,
and p, are readily available from the solution to the local
Riemann problems solved at all marching levels, and hence,
minimal additional computational cost is mcurred in the
detection stage. The shock threshold &gk is prescribed for
a.given problem.

2.3, Implementation Considerations

The principle of shock-cell splitting is conceptually easy,
but the numerical implementation of the shock-adaptive
scheme is not a straightforward task due to the irregularities
in the computational domain caused by the moving shocks
at each marching step. A double linked-list, schematically
depicted in Fig. 3, is employed for the storage of the
computational cells. This high-level object-oriented design is
very advantageous In actively maintaining an irregular grid.
This choice of list is motivated by the observation that every
cell is bounded by two interfaces; and, in general, there is
an interface between consecutive cells with the exception
that at a solid boundary-—a coordinate streamiine—the list
terminates with a cell interface.

The entry of an incoming shock in a cell is performed by
inserting a new cell {the downstream shock-subcell) and a new
interface (the partition) by updating the pointers « linking the
new structures to the existing structures at the desired position
in the list. The removal of a terminating shock-subcell is accom-
plished in a similar fashion, in which case the upstream shock-
subcell, characterised by its zero width, is removed from the
list along with its partition.

If in general a shock propagates through one cell to the next,
this is not the case at a solid boundary where the shock is
reflected and reenters the boundary cell. Other complications
may also arise at the intersection of two shocks where the two
shocks may be reflected or where one shock may overtake the
other. In both cases, the common upstreamn shock-subcell is
removed along with one of the partitions. The correct wave
pattern is reestablished based on the solution to the local Rie-
mann problem at the intersection point. The simplest approach
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FIG. 3. Schematic representation of the linked-list used in the shock-adaptive scheme.

is thus to remove partition and cell pairs merging with cell
interfaces even if this appears redundant when the shock simply
propagates through the next cell. A new partition and cell pair
will automatically be introduced at the next marching step to
account for the incoming shock.

3. SMOOTH FLOW COMPUTATION

By the use of the shock-adaptive Godunov scheme based on
the GLF, the error arising from averaging across discontinu-
ities—shocks and sliplines—is prevented; hence, the numerical
simulation of supersonic flow is effectively reduced to the
computation of smooth flow. The utmost importance of the
conservation form of the discretised equations (see Lax and
Wendroff [12)) for the correct capturing of the flow discontinu-
ities is no longer necessary since shocks and sliplines are now
captured exactly, based on the information extracted from the
Riemann problems. It is therefore possible to freely write the
governing equations in non-conservation form and an entropy-
conserving reformulation of the governing equations in the
smooth flow region is proposed.

The motivation for the use of an alternate set of governing
equations arises as a desire to eliminate the small entropy
overshoots commonly observed in the vicinity of sliplines [3]
despite the fact that the flow quantities are not averaged across
a slipline in the GLF. This phenomenon is not uvnigue fo the
GLF, but it is commonly cbserved when the Lagrangian formu-
lation is used (see [13] as an example). A closer examination
of the numerical solutions for various test problems indicates
that the conserved variables are all monotonicity-preserving,
except for the two geometrical variables U and V whose numeri-
cal errors contaminate the physical flow variables [7]. This
suggests the replacement of the two compatibility equations by
two equivalent equations.

Since the flow is isentropic along a streamline in a smooth
flow region, one of the two compatibility equations in {2} is
replaced by the law of conservation of entropy

(3)

along a streamline. In contrast with the Eulerian formulation,
the conservation of entropy equation provides an immediate
first integral in the GLF. The conservation law of entropy (3)
holds only in regions of smooth flow. Across a shock disconti-
nuity, the exact entropy jump is imposed by the shock-adaptive
scheme through the splitting of the shock-cell and the law of
conservation of entropy (5) is applicable in the smooth flow
regions upstream and downstream of the shock.

Along with the law of conservation of entropy, the conserva-
tion of mass and the conservation of energy equations provide
three first integrals for S, H, and K along a streamline, hence
this extension will be referred to as the SHK-formuiation.

The proposed choice for the sixth independent governing
equation of the SHK-formulation is

6_[3=__sin(t9+ﬁ}a_6 )
AA T aE

which is a combination of the two compatibility equations. In
(6), 8 = tan~' ({//V) defines the orientation angle of the distance
line whereas T = (U* + V)" 15 a stretching factor defining the
streamfunction. This choice of (6), which is not in conservative
form, is mostly guided by numerical considerations, as the
obtainment of 8 makes it possible to construct an entirely
explicit decoding procedure (see Section 4). In contrast, a sixth
equation for T, U, or V would give rise to a nonlinear equation
1o be solved iteratively, which is computationally costly. The
resulting difference equation for {(6) is

Axsin(8) + B7)
Ag T

*
Jri2

B}M =8} - - 9;'*—”2)-

)

Equation (7) is not used in updating the flow state in a shock-
subcell. The use of the strong conservative form of the govern-
ing equation (2} yields equivalently satisfactory results and
has the advantage of being simipler to implement, given the
trapezoidal geometry of a shock-subcell.

Finally, it should be emphasised that all primary physical
flow variables are conserved; that 1s, the mass, the energy, the
entropy, and the x and y components of the momentum are
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conserved-—only the geometrical variagble (3 is not. Moreover,
in the GLF, the conservation laws of mass, energy, and entropy
are satisfied analytically and only that of momentum are satis-
fied numerically. By contrast, all the physical conservation laws
are satisfied numerically in the Eulerian formulation.

4. NUMERICAL IMPLEMENTATION

The computational procedure for the shock-adaptive Godu-
nov scheme is summarised in the following seven steps:

Step 1. Initiation at A". Given a flow problem in the physical
xy-plane, an initial distance line T, not itself a streamline, is
chosen where the flow is known (e.g., a given uniform flow)
and identified as the distance line A = 0 in the computational
Af-plane. The curve 1 is parametrised by the streamfunction
£for &, &, ... &. In most cases, the initial distance line I" can
be chosen to be orthogonal to the given uniform flow and £
can be taken as the arclength of I'. This results in 77 =
1 and B¢ = — . E? is then known at A = 0 for all j by taking
the average within the cells. Further, no assumption is made
regarding the presence of shocks as they will be automati-
cally detected.

Step 2. Solution of the local Riemann problems, at A",
for all adjacent ceil pairs. With the flow states Qf =
{(p,p. M, 8)} known for all cells ai distance step n, a local
Riemann problem is solved at all cell interfaces, including
partitions, for all adjacent cell pairs. The flow states are assumed
constant within all cells. A Newton iterative method is em-
ployed (see [7, 14]) for solving the exact Riemann problems
for p* and #* immediately downstream of the elementary *
waves. At a partition, the initial guess for the downstream
pressure p*, in the Newton iterative procedure, is taken as the
pressure value in the downstream shock-subcell to expedite the
convergence. The numerical fluxes

F(Pfe &) if ok, <0

F(Pjﬁwz- 9?:1/2) -+ 0';"’:1/2 (Ef - Eﬁ:lrz)

lf iﬂ'fi],t;_ = 0,

(8)

are evaluated at §.,, where o), are the slopes d&/dA of the
interface ., at A" and E/%, is the averaged conserved flow
state along the inner (downstream) side of the shock relative
to the shock-subcell being updated. 1t is easy to see that the
composite flux is multi-valued at a partition &4, since
(FN)] ## (F ). The speeds ol of the partitions are updated
based on the speeds of the corresponding elementary shock
waves in the local Riemann problems.

The presence of a new shock is tested at all cell interfaces.
If the cell splitting criterion (4) is satisfied, a new partition is
introduced to account for the incoming shock and the cell
is split.
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At a boundary cell, the flow tangency angle §} is computed
for the given problem and the boundary Riemann problem with
initial data (p, p, M, 8}] and (p, p, M, 28, — 8)7 is solved. This
procedure effectively treats the boundary as a slipline with local
inclination angle 5.

Step 3. Derermination of the step size AX". To satisty the
stability condition of the scheme, the step size is determined
as the minimum of the step sizes

o l‘fftu?.l}
ANt = V/m;ax{-——A 3 (N

for the regular cells and

Aau_mm{———lﬁl———} (10)

i (‘U}'lﬂ.fz‘ + \Uq-uzb

for the shock-subcelis which represents the intersection point
of the * waves in the shock-subcell, or equivalently, the inter-
section point of the incoming elementary wave with the oppos-
ing cell interface, also an elementary wave. The prescribed
CFL number v is taken to be constant throughout the computa-
tions.

For an elementary Prandti—-Meyer expansion, ol 15 re-
placed by the speed of the leading Mach line (fastest characteris-
tic). For an elementary shock wave, ot » is replaced by the
shock speed, since any disturbance propagating in the shock
direction is bounded by the shock with the flow upstream of
the shock being undisturbed.

It should, however, be observed that under the strict applica-
tion of (10), a shock cannot formally leave a shock-cell due to
the recursive refinement of the step size in the upstream shock-
subcell. To avoid such a constraint, the CFL condition is relaxed
according to (3) and the step size is adjusted such that the
shock leaves the shock-cell exactly at a coordinate streamline.
The shock is then re-introduced at the next marching level
on the basis of the solution to the local Riemann problem at
that streamline.

Step 4. Advancement of the average cell states from A" to
A= An+ A A" The average states EZ*! for all non-terminating
cells, with domain

{AMOERA<A<AT &+ ol p(A — A%
< E< Ep t olp(A — AN,

are obtained at A" using the difference equation

AN
Agr!

Ef' = E] - =S (FY — (F)) (n



296

Configuration

£>0
(v > 0)
=0 slipline
(y=10)
£<0 ansjon
w<o9 -
GLF
1 b\ LA B I B
0.95 | o Godupov © -
09 - Exact — _|
0.85 I~ e ol
0.8 - —
P05 4 ]
0.7 3 -
0.65 | - : .
0.6 E
0.55'|i r B
Dl 1 1 L s

-08-06-04-02 0 0.2 04 0.6 0.8
/A

2 075 -

LEPAGE AND HUI

Eulerian Formulation

1 - T T T
0.95 |- < Godunov ©
0.0 Exact — |
0.85 | 27 .
0.8 r- r d -

f o075 4 -
0.7 - c:’ o “1
0.65 - ! -
0.6+ -
0.55 |- P -
05 L.t 1 L1 %

08-06-04-02 0 0.2 04 0.6 0.8

vz

GLF With SHK-Formulation

1 '—1@%’0 T T T T T
0.95 - ) Shock-Adaptive o
09k Exact _
0.85 -
08

a0 °

0.7
0.65
0.6
0.55

0.5 1 L] 1 1 .1 L

0.8-0.6-04-02 0 02 04 0.6
€/x

T
© 3 ¢ t 1 1 ¢t

FIG. 4. Density profiles of the numerical solution to a Riemann problem.

with the composite fluxes given by (8).
The cell width A £+ of a shock-subcell is updated using
AV = A8+ (0fn — oin) AN (12)
prior to advancing the conserved flow state. For a fixed co-
ordinate streamline, /2 = 0; for a partition, oin = Tl
as obtained from the solution to the local Riemann problem.

For a regular rectangular cell, the above difference equation
reduces to the familiar updating formula used in the classical
Godunov scheme.

Step 5. Obtainment of the flow variables Q"' =
(p. p, M, 81" ar A™*'. The average states E7*!, denoted here
by (e, &, €, €4, &5, )" for convenience, are decoded in order
to obtain the new values of the physical flow variables at A",
For the flow quantities (H, K, e;, e;, B) known at A, with 8
given ejther by (7) or by 8 = tan™! (es/e,), let

B= (e;cos B — ey 8in f3),

1
vy—1
C= (g0 + (es) — 2K°H;
then the product pT satisfies the quadratic equation
A(pTY + 2B(pT) + C =0
with discriminant A = B° — AC = 0 for supersonic flow.

For the usage of the governing equations (2) in conservative
form, with e; and ez known,

T="V(es) + (e
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and the appropriate solution for the pressure is

_-B+VA
P TA

Or, in the case of the SHK-formulation, with S known,

3 vy=1\(~B+ \/E)z — Aoy
P72 ATKS™

with corresponding T value

=—B+\/K
pA

T

Note thai, for the SHK-formulation, 8! is directly obtained

!

from (7) and the U and V equations need not be up-

dated.

Finally, the other flow variables are obtained using
y=B pTcosfB
K k]
y =& + pTsin 8
K 3
_ K
P T(ucos B—uvsinB)

M and 8 are obtained from their definitions.

Step 6. Elimination of the terminating shock-subcells, at
A1, The shock-subcells terminating at A”™! are eliminated by
removing the corresponding partitions and the upstream shock-
subcells. This renders the downstream subcell a regular cell
at A",

Step 7. Repeat steps 2-7 to march forward in A.

5. NUMERICAL EXPERIMENTS

Flows dominated by shock waves are simulated to illustrate
the advantages of the shock-adaptive scheme. A CFL number

4
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FIG. 5. Sudden formation of a shock wave: {a) computed Mach contours; (b} computed mach profile along a distance line downstream of 0.
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(a)

FIG. 6. Temperature conteurs in a supersonic channel using: (a) the shock-adaptive scheme based on the GLF, with SHK-formulation: {b) the classical

Godunov scheme based on the GLF.

of 0.90 is used in all computations; the shock threshold is
Beme = 0.70, except for the second example for which it is 0.90.

The first example consists of the constant-state two-dimen-
sional Riemann problem with initial parallel fow data,

(0.25,0.5,4.0,0.0)
(1.0,1.0,24,0.0)

if &> 0,

(p.p M )=
s if £< 0.

The computed density profiles of the numerical solution are
plotted in Fig. 4 to show the evolution of the shock-adaptive
scheme at various stages in its development. For the Godunov
scheme based on the Eulerian formulation, both shock and
slipline are smeared over several computational cells, the slip-
line resolution being much poorer. By use of the GLF, the
Godunov scheme can resclve the slipline very crisply while
there is a small improvement in the shock resolution, the latter
improvement being due to the compressive nature of the GLF.
Finally, the shock-adaptive scheme resolves the shock to infinite
order. At the slipline, the pressure is continuous and by correct-

ing the numerical entropy by the use of the SHK-formulation,
the overshoots int density observed near the slipline have been
consequently eliminated.

The second example, suggested by Johannesen in {I15] and
whose exact solution is given by Hui and Zhao in [3], consists
of a uniform free stream supersonic flow M., = 4.0 past a
specially designed airfoil such that a shock of finite strength
is formed suddenly in the interior of the flow field, with the
creation of a sliphine and a Prandtl-Meyer expansion wave at
the point O of origin of the shock (see Fig. 5(a)). This bench-
mark problem is computaticnally chaflenging due to the concen-
tration of all characteristics at the point 0. A hypersensitive
shock threshold of 8gx = 0.90 (with entropy jump less than
0.0056%) is used to correctly capture the shock at its earliest
stage in formation. The method is complemented by a second-
order scheme which accounts for the curvature of the airfoil
[7]. The results are shown in Fig. 5, where it can be seen
that the flow discontinuities are captured crisply. Although the
expansion wave is not visible in the contour plot, it is slightly
perceptible in the Mach number profile plot.
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In the last example, the steady flow in a two-dimensional
supersonic channel with wedge angles of 15° and —10° is
considered. The uniform upstream flow Mach number is
M. = 3.0. The computations use 25 uniform cells across the
channel. The normalised temperature contours for the shock-
adaptive Godunov scheme are plotted in Fig. 6 and compared
to the solution obtained by the classical Godunov scheme. The
manifest sharpness of the temperature contours in Fig. 6(a)
clearly demonstrates the superiority of the shock-adaptive
scheme over the classical Godunov scheme. Further, the slipline
emanating from the intersection point of the two incident shocks
is perceptible using the shock-adaptive scheme, but totally
blurred using the classical Godunov scheme.

It should be noted that the average number of iterations
required to solve an exact Riemann problem to within a toter-
ance of 107 is lower for the shock-adaptive scheme than for
the classical Godunov scheme, to 1.57 from 1.71 in the first
example and to 2.04 from 2.24 in the third example (and increas-
ingly lower if the method is used in conjunction with a second-
order scheme [7]). The explanation is simple: with the shocks
being detected, it is possible to use a very accurate initial guess
in the iterative procedure. However, the extra marching steps
required in the shock-adaptive scheme due to the additional
restriction (10} to the CFL condition for shock-subcells out-
weigh the reduction in the average number of iterations per
Riemann problem solved. Nonetheless, despite its higher cost,
the shock-adaptive scheme is much more cost-efficient than
the classical Godunov scheme as much greater accuracy is
achieved, as witnessed in the numerical examples.

6. CONCLUSIONS

While comparable resolution of flow discontinuities—
shocks and sliplines—can be and has been achieved using
front-tracking methods based on the Eulerian formulation [11],

. . the_present_methodology based on the generalised Lagrangian

formulation ensures the exact conservation of mass, energy,
and entropy; solves boundary value problems without the need
to generate a computational grid; and crisply resolves sliplines
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by use of coordinate streamlines and shocks by use of an
adaptive shock-cell splitting technique, Furthermore, the pro-
gramming logic required in the computer implementation is
substantiaily simpler in comparison with the Enlerian formula-
tion: first, the wave structure of the Riemann solution in the
GLF is much simpler in reiation to the coordinate system;
second, unlike the Eulerian formulation which necessitates the
tracking of both shocks and sliplines, only shocks need to be
tracked in the GLF; and finally, the computational domain for
boundary value problems is always regular. All these advan-
tages result in a highly efficient, accurate, and robust numeri-
cal scheme.
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